• Deutsch
  • English

Optimal electrode structure and density by design of mixing and calendering procedures (MiKal)

Funded by BMBF

Summary of the project:

MiKal is a project within the BMBF-funded ProZell Competence Cluster. This project focuses on the determination of the interaction of mixing processes, the resulting machine and product calendering behavior as well as the generated and performance-determining microstructure of the electrodes. This should enable the identification of optimal calendering conditions and the prediction of both the machine settings and product structure settings. The interdependency between mixing and calendering process is emphasized with the aim to achieve volumetrically higher energy densities with high performance.
 

 
Figure 1: iPAT calender
 
Objectives and tasks of the Institute for Particle Technology

  • Calender qualification for the display of high-density and further processable electrode coatings
  • Preparation and characterisation of suspensions
  • Examination of the interdependency between mixing and calendering process
  • Apply and optimize DEM simulation models to predict structural evolution and process design
  •  
    Project partners

    Institute for Machine Tools and Industrial Management (iwb), Münster Electrochemical Energy Technology (MEET), Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) – Department Production Research (ECP), Institute for Applied Materials – Materials for Electrical and Electronic Engineering (IAM-WET)


    Team Members

    Projects

    Cooperative project: Project results database and communication management for the battery cell production cluster ProZell (EMKoZell) more

    BaSS – BatterieSicherheitsStandardisierung more

    eKoZell – Environmental and Cost Assessment, Model and Communication Management for the Competence Cluster ProZell – Accompanying Project to the ProZell Cluster (eKoZell) moremore

    Cooperative project: Project results database and communication management for the battery cell production cluster ProZell (EMKoZell) more

    EVOLi²S – Evaluation of the technical and economic advantages of the open-cell module for lithium-ion and lithium-sulphur batteries with regard to stationary and mobile applications more

    Optimal electrode structure and density by design of mixing and calendering procedures (MiKal) more

    MultiDis – Multiscale approach for the description of carbon black deagglomeration in the dispersion process for a process and performance-optimized process control more

    ÖkoTroP – Ecologically gentle dry coating of battery electrodes with optimized electrode structure more

    PräLi – Prelithiation of electrodes more

    ProfiStruk – Process and system development for the process integrated inline structuring of Li-electrodes more

    Process modeling of the calendering of energy-rich electrodes (ProKal) more

    Roll-It more

    LiPlanet – Li-ion cell pilot lines network moremore

    LoCoTroP – Low cost dry coating of battery electrodes for energy efficient and environmentally friendly production processes more

    Sim4Pro- Digitalization Platform – Simulations for battery cell production more

    ZiLsicher – Zink-Air-Accumulators as safe electrochemical storage for low emission and explosion proof industrial applications more

    Finished Projects
    BenchBatt – Process based energy optimization and validation of Lithium-Ion and Lithium-Sulfur battery electrodes more

    GEENI – Graduate Program for Energy Storage and Electromobility more

    INSIDER – metal free Dual Ion energy storage technology utilizing anionic -intercalation more

    Academic Initiative for e-Mobility – Education and Training in the University Network MOBIL4e more

    ProLiEMo – Production Research for High-Power Lithium-Ion Batteries for Electro Mobility  mehr

    Functional Materials and Material Analysis for High Power Lithium-Ion Batteries more

    LithoRec – LithoRec – Recycling of Lithium Ion Batteries mehr